The Moore-penrose Inverse of a Linear Combination of Commuting Generalized and Hypergeneralized Projectors∗

نویسندگان

  • MARINA TOŠIĆ
  • DRAGANA S. CVETKOVIĆ-ILIĆ
  • CHUNYUAN DENG
  • Marina Tošić
  • Dragana S. Cvetković-Ilić
  • Chunyuan Deng
چکیده

In this paper we give a representation of the Moore-Penrose inverse of a linear combination of generalized and hypergeneralized projectors. Also, we consider the invertibility of some linear combination of commuting generalized and hypergeneralized projectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela the Moore-penrose Inverse of a Linear Combination of Commuting Generalized and Hypergeneralized Projectors

In this paper, some representations for the Moore-Penrose inverse of a linear combination of generalized and hypergeneralized projectors are found. Also, the invertibility for some linear combinations of commuting generalized and hypergeneralized projectors is considered.

متن کامل

Applications of CS decomposition in linear combinations of two orthogonal projectors

We study the spectrum and the rank of a linear combination of two orthogonal projectors. We characterize when this linear combination is EP, diagonalizable, idempotent, tripotent, involutive, nilpotent, generalized projector, and hypergeneralized projector. Also we derive the Moore-Penrose inverse of a linear combination of two orthogonal projectors in a particular case. The main tool used here...

متن کامل

On linear combinations of two commuting hypergeneralized projectors

The concept of a hypergeneralized projector as a matrix H satisfying H = H†, where H† denotes the Moore–Penrose inverse of H, was introduced by Groß and Trenkler in [Generalized and hypergeneralized projectors, Linear Algebra Appl. 264 (1997) 463-474]. Generalizing substantially some preliminary observations given therein, Baksalary et al. in [On some linear combinations of hypergeneralized pro...

متن کامل

The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules

Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...

متن کامل

An Efficient Schulz-type Method to Compute the Moore-Penrose Inverse

A new Schulz-type method to compute the Moore-Penrose inverse of a matrix is proposed. Every iteration of the method involves four matrix multiplications. It is proved that this method converge with fourth-order. A wide set of numerical comparisons shows that the average number of matrix multiplications and the average CPU time of our method are considerably less than those of other methods.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011